What is the radius of the circle inscribed in triangle $ABC$ if $AB = AC=7, BC=6$? Express your answer in simplest radical form.

Respuesta :

We are given

length of sides are

AB=7

AC=7

BC=6

now, we can use formula of area of triangle

[tex] A=r*s [/tex]

where

A is area of triangle

r is radius of in-circle

s is semi-perimeter of triangle

step-1: Finding area of triangle

We can use

Heron's formula

[tex] s=\frac{a+b+c}{2} [/tex]

a , b and c are values of sides

[tex] s=\frac{7+7+6}{2} [/tex]

[tex] s=10 [/tex]

[tex] A=\sqrt{s(s-a)(s-b)(s-c)} [/tex]

now, we can plug values

[tex] A=\sqrt{10(10-7)(10-7)(10-6)} [/tex]

[tex] A=6\sqrt{10} [/tex]

step-2: Finding radius(r)

we got

[tex] A=6\sqrt{10} [/tex]

[tex] s=10 [/tex]

now, we can find radius

[tex] A=r*s [/tex]

[tex] 6\sqrt{10} =r*10 [/tex]

[tex] r=\frac{3\sqrt{10}}{5} [/tex]............Answer