Respuesta :

we have given an equation [tex] 1/2(b-12) [/tex]

we need to simplify the given equation.

the distributive property is used here [tex] a(b+c)=ab+ac [/tex]

[tex] 1/2(b-12)=\frac{b}{12} -\frac{12}{2} [/tex]

if we simplify the terms

we get [tex] \frac{b}{2} -\frac{6}{1} [/tex].

1 / 2 (b - 12) ===> b / 2 - 6

Steps:

1 / 2 (b - 12)

Apply the Distributive Law: a ( b - c ) ===> ab - ac

a ===> 1 / 2; b ===> b; c ====> 12

1 / 2 b - 1 / 2 * 12

1 / 2 b - 12 * 1 / 2

Simplify:

1 / 2 b - 12 * 1 / 2

b / 2 - 6

1 / 2 b - 12 * 1 / 2

1 / 2 b ===> b / 2 ===> 1 / 2 b

Multiply Fractions:

a ( b ) / c ===> a( b )/c

1 * b / 2

Multiply:

1 * b ===> b

b / 2

12 * 1 / 2 ===> 6

12 * 1 / 2

Multiply Fractions::

a ( b ) / c =====> a(b)/c

1(12)/2

Multiply the numbers:

1 * 12 =====> 12

12 / 2

Divide numbers:

12 / 2 ======> 6

6

Answer: b / 2 - 6

Therefore, 1 / 2 ( b - 12 ) =========> b / 2 - 6

Hope that helps!!!!! : )