Respuesta :

Alright, lets get started.

[tex] log \sqrt{7} + log \sqrt{20} - log\sqrt{14} = \frac{1}{2} [/tex]

We could write this square root as [tex] \frac{1}{2} [/tex]

[tex] log7^{\frac{1}{2}} + log20^{\frac{1}{2}}- log14^{\frac{1}{2}} [/tex]

Using the property of [tex] logm^{n } = n log (m) [/tex]

[tex] \frac{1}{2}log 7 + \frac{1}{2} log 20 - \frac{1}{2} log14 [/tex]

[tex] \frac{1}{2} [/tex] is common in each term, so

[tex] \frac{1}{2}(log7 + log 20 - log 14) [/tex]

Using property of [tex] log m + log n = log(mn) [/tex]

[tex] \frac{1}{2}(log 140 - log 14) [/tex]

Using property of [tex] log m - log n = log\frac{m}{n} [/tex]

[tex] \frac{1}{2}log\frac{140}{14} [/tex]

[tex] \frac{1}{2} log 10
[/tex]

log 10 value is 1 , hence

[tex] \frac{1}{2} * 1 = \frac{1}{2} [/tex] : Answer

Hope it will help :)