Respuesta :

Alright, lets get started.

Please refer the diagram, I have attached.

∠ABC is given as y.

So, the ∠EBC will be 180 - ∠ABC.

∠EBC = 180 - y

As given in question, BO is the bisector of ∠EBC, it means ∠OBC will be half of the ∠EBC.

∠OBC = [tex] \frac{1}{2} [/tex] of ∠EBC

∠OBC = [tex] \frac{1}{2} [/tex] (180 - y)

∠OBC = [tex] 90 - \frac{y}{2} [/tex]

Similarly,

the ∠DCB will be 180 - ∠ACB

∠DCB = 180 - z

As given in question, CO is the bisector of ∠DCB, it means ∠OCB will be half of the ∠DCB.

∠OCB = [tex] \frac{1}{2} [/tex] of ∠DCB

∠OCB = [tex] \frac{1}{2} [/tex] (180 - z)

∠OCB = [tex] 90 - \frac{z}{2} [/tex]

In triangle OBC, the sum of the angles of the triangle will be 180.

∠BOC + [tex] 90 - \frac{y}{2} [/tex] + [tex] 90 - \frac{z}{2} [/tex] = 180

∠BOC + [tex] 180 - \frac{y}{2} - \frac{z}{2} = 180 [/tex]

∠BOC = [tex] \frac{y}{2} + \frac{z}{2} [/tex] = [tex] \frac{y+z}{2} [/tex]

As per upper triangle ABC, [tex] x + y + z = 180 [/tex]

or [tex] y + z = 180 - x [/tex]

Putting this value in value of ∠BOC

∠BOC = [tex] \frac{180-x}{2} [/tex]

∠BOC = [tex] 90 - \frac{x}{2} [/tex]

∠BOC = 90 - [tex] \frac{1}{2} BAC [/tex] : Hence proved

Hope it will help :)

Ver imagen stokholm