Respuesta :

The exponents distribute over factors:

[tex] (ab)^c = a^c \times b^c [/tex]

so, you have

[tex] (3.2 \times 10^6)^{-3} = 3.2^{-3} \times (10^6)^{-3} [/tex]

Let's focus on each factor: applying the definition of negative exponents, you have

[tex] 3.2^{-3} = \cfrac{1}{3.2^3} \approx 0.03 [/tex]

While for the power of 10, you can use the following rule

[tex] (a^b)^c = a^{bc} [/tex] to write

[tex] (10^6)^{-3} = 10^{6\cdot (-3)} = 10^{-18} [/tex]

So, the expression evaluates to

[tex] 0.03\times 10^{-18} = 3\times 10^{-20} [/tex]