Respuesta :

Answer : 29.5°

Given r = 10, q = 20, and Q = 100°

From the attached figure we can see that two sides and one angle is given

We use sine rule to find angle R

[tex] \frac{sin A}{a} = \frac{Sin B}{b} = \frac{Sin C}{c} [/tex]

In triangle QRS

[tex] \frac{sin Q}{q} = \frac{Sin R}{r} = \frac{Sin S}{s} [/tex]

r = 10, q = 20, and Q = 100°

[tex] \frac{sin Q}{q} = \frac{Sin R}{r} [/tex]

Replace all the values

[tex] \frac{sin 100}{20} = \frac{sin R}{10} [/tex]

[tex] \frac{sin(100)*10}{20} = sin(R) [/tex]

[tex] \frac{0.984807753*10}{20} [/tex] =sin R

0.4932403876 = sin (R)

R= [tex] sin^{-1} (0.4932403876) [/tex]

R= 29.5 degrees

Ver imagen lisboa

Answer:

C

Step-by-step explanation:

Edge 2020 present