Please help. 24 points!!
The inverse of [tex]f(x) = \frac{2x-1}{x+5}[/tex] may be written in the form [tex]f^{-1}(x)=\frac{ax+b}{cx+d}[]/tex, where a, b, c, and d are real numbers. Find [tex]a/c[/tex].

Respuesta :

The given function is,

[tex] f(x)= \frac{2x-1}{x+5} [/tex].

Or, [tex] y= \frac{2x-1}{x+5} [/tex]

To find the inverse of a function, first step is to switch x and y. Therefore,

[tex] x= \frac{2y-1}{y+5} [/tex]

Next stpe is to solve the above equation for y t get the inverse f f(x). Hence, multiply each sides by y + 5 to get rid of fraction form. So,

[tex] x*(y+5)= \frac{2y-1}{y+5}*(y+5) [/tex]

xy + 5x = 2y - 1

xy = 2y - 1 - 5x Subtract 5x from each sides to isolate y.

xy - 2y = -5x - 1 Subtract 2y from each sides.

y(x - 2) = -5x -1 Take out the common factor y.

[tex] \frac{y(x-2)}{(x-2)} =\frac{(-5x-1)}{(x-2)} [/tex] Divide each sides by x-2.

[tex] y=\frac{(-5x-1)}{(x-2)} [/tex]

So, [tex] f^-1(x)=\frac{-5x-1}{x-2} [/tex]

Now when we will compare [tex] f^-1(x)=\frac{-5x-1}{x-2} [/tex] with [tex] f^-1(x)=\frac{ax+b}{cx+d} [/tex] then we will get a = -5, b = -1, c = 1 and d=-2

So, [tex] \frac{a}{c} =\frac{-5}{1} =-5 [/tex]

Hope this helps you!