when plane is moving in head wind condition we will have
[tex]V_{plane} - v_{wind} = \frac{distance}{time}[/tex]
[tex]V_{plane} - v_{wind} = \frac{180}{2}[/tex]
[tex]V_{plane} - v_{wind} = 90 mph[/tex]
now when wind is tail wind condition during return journey we will have
time = 1 h 15 min = 1.25 hour
[tex]V_{plane} + v_{wind} = \frac{distance}{time}[/tex]
[tex]V_{plane} + v_{wind} = \frac{180}{1.25 }[/tex]
[tex]V_{plane} + v_{wind} = 144 mph[/tex]
Now add both equations
[tex]V_{plane} = 117 mph[/tex]
[tex]v_{wind} = 27 mph[/tex]