Here we have to use the following ratio rule
[tex] tan \Theta =\frac{y}{x} [/tex]
In the given point , x=-2, y=3, so
[tex] tan \Theta =- \frac{3}{2} [/tex]
[tex] sec \theta = \sqrt{1+tan^2 \theta} [/tex]
Using the value of tan theta, we will get
[tex] sec \theta = -\sqrt{1+\frac{9}{4}} = -\frac{\sqrt{13}}{2} [/tex]
Now we need to find the value of cos theta
[tex] cos \theta = -\frac{1}{sec \theta} = -\frac{2 \sqrt{13}}{13} [/tex]
And
[tex] sin \theta = \sqrt{1-cos^2 \theta} = \sqrt{1-\frac{4}{13}} =\frac{3 \sqrt{13}}{13} [/tex]