Determine whether or not f is a conservative vector field. if it is, find a function f such that f = ∇f. (if the vector field is not conservative, enter dne.) f(x, y) = (2x − 6y) i + (−6x + 10y − 9) j\

Respuesta :

[tex]\mathbf f[/tex] is conservative if we can find a scalar function [tex]f[/tex] such that [tex]\nabla f=\mathbf f[/tex]. This is equivalent to solving the system of PDEs,

[tex]\dfrac{\partial f}{\partial x}=2x-6y[/tex]

[tex]\dfrac{\partial f}{\partial y}=-6x+10y-9[/tex]

Integrate both sides of the first PDF with respect to [tex]x[/tex]:

[tex]f(x,y)=x^2-6xy+g(y)[/tex]

where [tex]g[/tex] is some function independent of [tex]x[/tex]. Then differentiatng with respect to [tex]y[/tex], we have

[tex]\dfrac{\partial f}{\partial y}=-6x+\dfrac{\mathrm dg}{\mathrm dy}=-6x+10y-9[/tex]

[tex]\implies\dfrac{\mathrm dg}{\mathrm dy}=10y-9\implies g(y)=5y^2-9y+C[/tex]

and so [tex]\mathbf f[/tex] is indeed conservative, with

[tex]f(x,y)=x^2-6xy+5y^2-9y+C[/tex]