Match each function with its range.
1. t(x) = -sqrt of x                    |         y <= 2
2. p(x) = cube root of 2 - x      |         y <= 0
3. w(x) = 2 + sqrt of x             |         All real numbers
4. r(x) = -2 + sqrt of 2 - x        |        y >= 2
5. k(x) = 2 - sqrt of x               |        y >= -2
6. v(x) = sqrt of -x                   |        y >= 0

Respuesta :

gmany

[tex] 1.\ t(x)=-\sqrt{x}\to y\leq0\\\\2.\ p(x)=\sqrt[3]{2-x}\to \text{All real numbers}\\\\3.\ w(x)=2+\sqrt{x}\to y\geq2\\\\4.\ r(x)=-2+\sqrt{2-x}\to y\geq-2\\\\5.\ k(x)=2-\sqrt{x}\to y\leq2\\\\6.\ v(x)=\sqrt{-x}\to y\geq0\\-------------------\\\sqrt{x}\geq0,\ \sqrt[3]{x}\in\mathbb{R} [/tex]

Answer:

[tex]1)\ t(x)=-\sqrt{x}------------\ \ y\leq 0\\\\2)\ p(x)=\sqrt[3]{2-x}-------\ \ \text{All real numbers}\\\\3)\ w(x)=2+\sqrt{x}---------\ \ y\geq 2\\\\4)\ r(x)=-2+\sqrt{2-x}--------\ \ y\geq -2\\\\5)\ k(x)=2-\sqrt{x}----------\ \ y\leq 2\\\\6)\ v(x)=\sqrt{-x}---------\ \ y\geq 0[/tex]

Step-by-step explanation:

1)

[tex]t(x)=-\sqrt{x}[/tex]

We know that:

[tex]\sqrt{x}\geq 0[/tex]

This means that:

[tex]-\sqrt{x}\leq 0[/tex]

( since when both side of the inequality is multiplied by a negative number then the sign of the inequality gets reversed )

This means that:

[tex]t(x)\leq 0[/tex]

Hence, the range is:

[tex]y\leq 0[/tex]

2)

[tex]p(x)=\sqrt[3]{2-x}[/tex]

We know that cube root is defined for all the real numbers and also the range covers the whole of R

Hence, the range is: All real numbers.

3)

[tex]w(x)=2+\sqrt{x}[/tex]

Again we know that:

[tex]\sqrt{x}\geq 0\\\\i.e.\\\\2+\sqrt{x}\geq 2\\\\i.e.\\\\w(x)\geq 2[/tex]

Hence, the range is:

      [tex]y\geq 2[/tex]

4)

[tex]r(x)=-2+\sqrt{2-x}[/tex]

we know that:

[tex]\sqrt{x}\geq 0\\\\i.e.\\\\-2+\sqrt{x}\geq -2\\\\i.e.\\\\w(x)\geq -2[/tex]

Hence, the range is:

      [tex]y\geq -2[/tex]

5)

[tex]k(x)=2-\sqrt{x}[/tex]

Since,

[tex]\sqrt{x}\geq 0[/tex]

This means that:

[tex]-\sqrt{x}\leq 0[/tex]

so,

[tex]-\sqrt{x}+2\leq 2\\\\i.e.\\\\2-\sqrt{x}\leq 2\\\\i.e.\\\\k(x)\leq 2[/tex]

Hence, the range is:

                      [tex]y\leq 2[/tex]

6)

[tex]v(x)=\sqrt{-x}[/tex]

We know that the square root of a number is always greater than or equal to zero.

so,

[tex]\sqrt{-x}\geq 0[/tex]

i.e.

The range is:

                  [tex]y\geq 0[/tex]