Someone help me out please

1 step (B): raise both sides of the equation to the power of 2.
[tex] (\sqrt{x+3}-\sqrt{2x-1})^2=(-2)^2,\\ (x+3)-2\sqrt{x+3}\cdot \sqrt{2x-1}+(2x-1)=4,\\ 3x+2-2\sqrt{x+3}\cdot \sqrt{2x-1}=4[/tex].
2 step (A): simplify to obtain the final radical term on one side of the equation.
[tex] -2\sqrt{x+3}\cdot \sqrt{2x-1}=4-3x-2,\\ -2\sqrt{x+3}\cdot \sqrt{2x-1}=2-3x,\\ 2\sqrt{x+3}\cdot \sqrt{2x-1}=3x-2 [/tex].
3 step (F): raise both sides of the equation to the power of 2 again.
[tex] (2\sqrt{x+3}\cdot \sqrt{2x-1})^2=(3x-2)^2,\\ 4(x+3)(2x-1)=(3x-2)^2 [/tex].
4 step (E): simplify to get a quadratic equation.
[tex] 4(2x^2-x+6x-3)=(3x)^2-2\cdot 3x\cdot 2+2^2,\\ 8x^2+20x-12=9x^2-12x+4,\\ x^2-32x+16=0 [/tex].
5 step (D): use the quadratic formula to find the values of x.
[tex] D=(-32)^2-4\cdot 16=1024-64=960, \\ \sqrt{D} =8\sqrt{5} ,\\ x_{1,2}=\dfrac{32\pm 8\sqrt{5}}{2} =16\pm 4\sqrt{5} [/tex].
6 step (C): apply the zero product rule.
[tex] x^2-32x+16=(x-16-4\sqrt{5}) (x-16+4\sqrt{5}) ,\\ (x-16-4\sqrt{5}) (x-16+4\sqrt{5}) =0,\\ x_1=16+4\sqrt{5} ,x_2=16-4\sqrt{5} [/tex].
Additional 7 step: check these solutions, substituting into the initial equation.