Which equation has the solutions (x=-3=/- square root of 3i) / 2

Options:

2x2 + 6x + 9 = 0

x2 + 3x + 12 = 0

x2 + 3x + 3 = 0

2x2 + 6x + 3 = 0

Respuesta :

we are given

solution of quadratic equation as

[tex] x=\frac{-3+-\sqrt{3}i}{2} [/tex]

we can also write it as

[tex] x=\frac{-3-\sqrt{3}i}{2} [/tex]

[tex] x=\frac{-3+\sqrt{3}i}{2} [/tex]

now, we can write it in terms of function

[tex] f(x)=(x-(\frac{-3+\sqrt{3}i}{2}))(x-(\frac{-3-\sqrt{3}i}{2})) [/tex]

Firstly , we can multiply it

[tex] =xx-\left(\frac{-3-\sqrt{3}i}{2}\right)x-\left(\frac{-3+\sqrt{3}i}{2}\right)x+\left(\frac{-3+\sqrt{3}i}{2}\right)\left(\frac{-3-\sqrt{3}i}{2}\right) [/tex]

[tex] x^2+3x+\frac{9}{4}-\frac{3i^2}{4}=0 [/tex]

now, we can simplify it

[tex] x^2+3x+\frac{9}{4}+\frac{3}{4}=0 [/tex]

[tex] x^2+3x+\frac{12}{4}=0 [/tex]

[tex] x^2+3x+3=0 [/tex]

so,

option-C.........Answer

Answer:

c- x2 + 3x + 3 = 0

Step-by-step explanation: