Sandra graphed the system of equations that can be used to solve x^3-2x^2-11x+12=x^3-13x-12 What are the roots of the polynomial equation?

A.) –12, 12

B.) –4, 3

C.) –3, 4

D.) –1, 1

Respuesta :

First you need to solve the equation for x so it would become -2x^2+2x+24=0, when you factor it out it becomes -2(x^2-x-12)After factoring the inside it becomes -2(x-4)(x+3). Now (x-4) equals to 0 and (x+3) equals to 0 after solving for x you get the roots 4,-3

Answer: C.) –3, 4.


Step-by-step explanation: Given equation [tex]x^3-2x^2-11x+12=x^3-13x-12[/tex].

Subtracting x^3 from both sides, we get

[tex]x^3-x^3-2x^2-11x+12=x^3-x^3-13x-12[/tex].

[tex]-2x^2-11x+12=-13x-12[/tex].

Adding 13x and 12 on both sides, we get

[tex]-2x^2-11x+12+13x+12=-13x-12+13x+12[/tex].

[tex]-2x^2+2x+24=0[/tex].

Dividing whole equation by -2, we get

[tex]x^2-x-12=0[/tex].

Factoring quadratic, we get

[tex](x-4)(x+3)=0[/tex].

x-4=0 and x+3=0

x=4 and x=-3.