Respuesta :
First you need to solve the equation for x so it would become -2x^2+2x+24=0, when you factor it out it becomes -2(x^2-x-12)After factoring the inside it becomes -2(x-4)(x+3). Now (x-4) equals to 0 and (x+3) equals to 0 after solving for x you get the roots 4,-3
Answer: C.) –3, 4.
Step-by-step explanation: Given equation [tex]x^3-2x^2-11x+12=x^3-13x-12[/tex].
Subtracting x^3 from both sides, we get
[tex]x^3-x^3-2x^2-11x+12=x^3-x^3-13x-12[/tex].
[tex]-2x^2-11x+12=-13x-12[/tex].
Adding 13x and 12 on both sides, we get
[tex]-2x^2-11x+12+13x+12=-13x-12+13x+12[/tex].
[tex]-2x^2+2x+24=0[/tex].
Dividing whole equation by -2, we get
[tex]x^2-x-12=0[/tex].
Factoring quadratic, we get
[tex](x-4)(x+3)=0[/tex].
x-4=0 and x+3=0