Respuesta :
Hello,
[tex] 5^{-x-3}=8^{5x}\\\Rightarrow\ (-x-3)\ Log(5)=5x\ Log(8)\\\Rightarrow\ -xLog(5)-3Log(5)=5x Log(8)\\ \Rightarrow\ x(5 Log(8)+Log(5))=-3Log(5)\\ \Rightarrow\ x=\dfrac{-3\ Log(5)}{Log(5)+5\ Log(8)}\\x\approx{-0.40213677...} [/tex]
[tex] 5^{(-x-3)}=8^{5x} \implies \\5^{(-x-3)}=8^{5x} \implies \\\log5^{(-x-3)}=\log{8^{5x}} \implies \\(-x-3)\log{5}=5x\log{8} \implies \\-x\log{5}-3\log{5}=5x\log{8}\implies \\-x\log{5}-5x\log{8}=3\log{5}\implies \\ -x(\log{5}+5\log{8}})=3\log{5} \implies \\-x=\frac{3\log{5}}{\log{5}+5\log{8}}\implies \\x=\frac{-3\log{5}}{\log{5}+5\log{8}} [/tex]