Respuesta :

WE need to find the probability ([tex] \frac{Junior}{Boy} [/tex]

We know [tex] P(\frac{A}{B})= \frac{P(A and B)}{P(B)} [/tex]

P([tex] \frac{Junior}{Boy} [/tex])=[tex] \frac{P(Junior and Boy)}{(Boy)} [/tex]

First we find P(Boy)

From the table we can see that we have 12 boys out of (12+18=30) students

So P(Boy) = [tex] \frac{12}{30} [/tex]

Now we find the intersection of Junior and Boy

WE look at the Junior row and boys column that is 2

{P(Junior ∩ Boy) = [tex] \frac{2}{30} [/tex]

P([tex] \frac{Junior}{Boy} [/tex])=[tex] \frac{P(Junior and Boy)}{(Boy)} [/tex]

P([tex] \frac{Junior}{Boy} [/tex])= [tex] \frac{\frac{2}{30}}{\frac{12}{30}} [/tex]

= [tex] \frac{2}{12} [/tex] = [tex] \frac{1}{6} [/tex]

P([tex] \frac{Junior}{Boy} [/tex]) = [tex] \frac{1}{6} [/tex]