Respuesta :
We try to represent each number inside the square root as a product of a square and another number.
a) 7√32 - 5√2 + √8
√32 = √(16 *2) = √16 * √2 = 4* √2 = 4√2
√8 = √(4 *2) = √4 * √2 = 2* √2 = 2√2
7√32 - 5√2 + √8 = 7*(4√2) - 5√2 + 2√2 =
= 28√2 - 5√2 + 2√2 Factorize out √2
= (28 - 5 + 2)√2
= 25√2
b) 2√150 - 4√54 + 6√24
√150 = √(25 * 6) = √25 * √6 = 5*√6 = 5√6
√54 = √(9 * 6) = √9 * √6 = 3*√6 = 3√6
√24 = √(4 * 6) = √4 * √6 = 2*√6 = 2√6
2√150 - 4√54 + 6√24 = 2*(5√6) - 4*(3√6) + 6*(2√6)
= 2*5√6 - 4*3√6 + 6*2√6
= 10√6 - 12√6 + 12√6 Factorize √6
= (10 - 12 + 12)√6
= 10√6
a) 7√32 - 5√2 + √8
√32 = √(16 *2) = √16 * √2 = 4* √2 = 4√2
√8 = √(4 *2) = √4 * √2 = 2* √2 = 2√2
7√32 - 5√2 + √8 = 7*(4√2) - 5√2 + 2√2 =
= 28√2 - 5√2 + 2√2 Factorize out √2
= (28 - 5 + 2)√2
= 25√2
b) 2√150 - 4√54 + 6√24
√150 = √(25 * 6) = √25 * √6 = 5*√6 = 5√6
√54 = √(9 * 6) = √9 * √6 = 3*√6 = 3√6
√24 = √(4 * 6) = √4 * √6 = 2*√6 = 2√6
2√150 - 4√54 + 6√24 = 2*(5√6) - 4*(3√6) + 6*(2√6)
= 2*5√6 - 4*3√6 + 6*2√6
= 10√6 - 12√6 + 12√6 Factorize √6
= (10 - 12 + 12)√6
= 10√6
[tex]7 \sqrt{32} - 5 \sqrt{2} + \sqrt{8} \\ \\ 7 \times 4 \sqrt{2} - 5 \sqrt{2} + 2 \sqrt{2} \\ \\ 28 \sqrt{2} - 5 \sqrt{2} + 2 \sqrt{2} \\ \\ 25 \sqrt{2} \\ \\ [/tex]
The final result is: 25√2 or 35.3553.
----------
[tex]2 \sqrt{150} - 4 \sqrt{54} + 6 \sqrt{24} \\ \\ 2 \times 5 \sqrt{6} - 4 \sqrt{54} + 6 \sqrt{24} \\ \\ 2 \times 5 \sqrt{6} - 4 \times 3 \sqrt{6} + 6 \sqrt{24} \\ \\ 2 \times 5 \sqrt{6} - 4 \times 3 \sqrt{6} + 6 \times 2 \sqrt{6} \\ \\ 10 \sqrt{6} - 4 \times 3 \sqrt{6} + 6 \times 2 \sqrt{6} \\ \\ 10 \sqrt{6} - 12 \sqrt{6} + 6 \times 2 \sqrt{6} \\ \\ 10 \sqrt{6} - 12 \sqrt{6} + 12 \sqrt{6} \\ \\ 10 \sqrt{6} \\ \\ [/tex]
The final result is: 10√6 or 24.4949.
The final result is: 25√2 or 35.3553.
----------
[tex]2 \sqrt{150} - 4 \sqrt{54} + 6 \sqrt{24} \\ \\ 2 \times 5 \sqrt{6} - 4 \sqrt{54} + 6 \sqrt{24} \\ \\ 2 \times 5 \sqrt{6} - 4 \times 3 \sqrt{6} + 6 \sqrt{24} \\ \\ 2 \times 5 \sqrt{6} - 4 \times 3 \sqrt{6} + 6 \times 2 \sqrt{6} \\ \\ 10 \sqrt{6} - 4 \times 3 \sqrt{6} + 6 \times 2 \sqrt{6} \\ \\ 10 \sqrt{6} - 12 \sqrt{6} + 6 \times 2 \sqrt{6} \\ \\ 10 \sqrt{6} - 12 \sqrt{6} + 12 \sqrt{6} \\ \\ 10 \sqrt{6} \\ \\ [/tex]
The final result is: 10√6 or 24.4949.