Solution: Let x be the total space of hard drive.
We are given 80% space of hard drive is full and 12000 megabytes are free.
We can write:
[tex]x-80\% \times x=12000[/tex]
[tex]x-\frac{80}{100}x =12000[/tex]
[tex]\frac{100x-80x}{100}=12000[/tex]
[tex]20x=12000 \times 100[/tex]
[tex]x=\frac{1200000 }{20}[/tex]
[tex]x=60000[/tex] megabytes
We have to free 5% of space as the difference between 80% and 75% is 5%.
Therefore 5% of 60000 is:
[tex]\frac{5}{100} \times60000=3000[/tex]
We know that 1 minute of video uses 60 megabytes of space.
Therefore number of minutes of video that should be deleted to make 75% of space free is:
[tex]\frac{3000}{60}=50[/tex] minutes of video
Hence, 50 minutes of video should be deleted so that the hard drive is 75% full.