Respuesta :

For this case, the first thing we must do is define variables.

We have then:

x: length of the garden

y: width of the garden

The garden area is:

[tex] xy = 5000 [/tex]

The perimeter of the garden is:

[tex] 2x + 2y = 300 [/tex]

Rewriting the perimeter:

[tex] x + y = 150 [/tex]

[tex] y = 150-x [/tex]

Substituting in the area we have:

[tex] x (150-x) = 5000 [/tex]

[tex] 150x-x ^ 2 = 5000 [/tex]

Completing squares:

[tex] x ^ 2-150x = -5000 [/tex]

[tex] x ^ 2-150x + (- 75) ^ 2 = -5000 + (- 75) ^ 2 [/tex]

[tex] (x-75) ^ 2 = 625 [/tex]

We discard the negative root:

[tex] (x-75) = \sqrt{625} [/tex]

[tex] (x-75) = 25 [/tex]

[tex] x = 25 + 75 [/tex]

[tex] x = 100 [/tex]

Then, the other dimension is:

[tex] y = 150-x [/tex]

[tex] y = 150-100 [/tex]

[tex] y = 50 [/tex]

Answer:

The dimensions of the garden are:

[tex] x = 100 [/tex]

[tex] y = 50 [/tex]