Find the quotient of 4.13 x 10^-8 and 0.04 x 10^5. In two or more complete sentences, explain each step in your calculations.Include the quotient as part of your final answer.

Respuesta :

we know that

Quotient is the number resulting from the division of one quantity by another

Let

x--------> the first quantity

y------> the second quantity

q------> the quotient

So

[tex]q=\frac{x}{y}[/tex] -------> equation 1

in this problem

[tex]x=4.13*10^{-8} \\ y= 0.04*10^{5}[/tex]

Substitute the values in the equation 1

[tex]q=\frac{4.13*10^{-8}}{0.04*10^{5}}[/tex]

Simplify

[tex]q=\frac{4.13*10^{-8}}{0.04*10^{5}}=\frac{4.13}{0.04}*10^{-8}*10^{-5}=\frac{4.13}{0.04}*10^{-13}\\ \\q=103.25*10^{-13}\\ \\q= (1.0325*10^{2})*10^{-13}\\ \\q= 1.0325*10^{-11}[/tex]

therefore

the answer is

The quotient is equal to [tex]1.0325*10^{-11}[/tex]