Respuesta :

Given:

[tex]a^2+3a+9=0[/tex]

If we need to find what [tex]a^3[/tex] is, we can solve for a and plug it in. Let's use the quadratic formula to solve for a. The quadratic formula is:

[tex]a=\frac{-b+\sqrt{b^2-4ac}}{2a}[/tex]  and  [tex]a=\frac{-b-\sqrt{b^2-4ac}}{2a}[/tex]

Let's identify our a, b, and c:

a: 1

b: 3

c: 9

Plug in the values into the quadratic formula:

[tex]a=\frac{-3+\sqrt{(3)^2-4(1)(9)}}{2(1)}[/tex]

Simplify everything under the radical:

[tex]a=\frac{-3+\sqrt{-27}}{2}[/tex]

Simplify the radical:

[tex]a=\frac{-3+3i\sqrt{3}}{2}[/tex]

-----------------------------------------------------------------------------

Let's solve for the second part of the quadratic formula. Everything will be the same, so we can just replace the + with a -.

[tex]a=\frac{-3+3i\sqrt{3}}{2}[/tex]  and  [tex]a=\frac{-3-3i\sqrt{3}}{2}[/tex]

These two are your answers. Now, since we know what a is, let's cube this value:

[tex](a=\frac{-3+3i\sqrt{3}}{2})^3[/tex]

Simplify:

[tex]27[/tex]

You will get the same answer if you cube both of the quadratic answers. So, your final answer:

[tex]a^3=27[/tex]