About 1.75 million people live in a circular region with a 15-mile diameter. Find the population density in people per square mile. Round your answer to the nearest whole number.

Answer with work please

Respuesta :

About 1.75 million people live in a circular region with a 15-mile diameter. Find the population density in people per square mile.

Solution: We are given that the population of a circular region = 1.75 million = [tex]1,075,000[/tex]

Also we are given the circular region has a diameter = 15 mile

Which means the radius of region [tex]\frac{15}{2}=7.5[/tex] mile

Therefore, the area of the circular region [tex]=\pi r^{2}[/tex]

                                                                            [tex]=3.14 \times 7.5^{2}[/tex]

                                                                            [tex]=176.625[/tex]

Now the population density per square mile is:

[tex]\frac{1075000}{176.625}[/tex]

[tex]6086.34 \approx6086[/tex]

Therefore, the population density per square mile is 6086

The diameter of the circular region is 15 miles

that gives radius = 7.5 miles

Now,

Area = π r² = 3.14 * 7.5* 7.5

= 176.625 mile²

Population density = number of people / land area

this is = [tex]\frac{1750000}{176.625} = 9907.997[/tex]

Now rounding off to nearest whole number, we get 9908

So, there  are 9908 population living in per square mile.