find the inverse of each function (show work please)

To find the inverse function of a function, you rearrange for the x term (could be some other letter) and then swap the function and the x at the end. For example,
[tex]g(x)=15x-10 \Rightarrow x=\frac{g(x)+10}{15}[/tex] and so,
[tex]g^{-1}(x) = \frac{x+10}{15}.[/tex]
For part 3 we have
[tex]h(x)=\frac{x-12}{4} \Rightarrow x=4h(x)+12[/tex] and hence,
[tex]h^{-1}(x)=4x+12=4(x+3)[/tex]
Can you do part 4 on your own?