Answer: Resistance =[tex]3.2 \Omega[/tex] , Current = 1.56 A, Voltage =4.99 V
The resistance,
[tex]R=\frac {\rho l}{A}[/tex]
where, [tex] \rho[/tex] is resistivity, A is the area and l is the length of the resistor.
It is given that:
[tex]\rho=1.0\times10^{-3}\Omega m[/tex]
Length, l=2 mm
Area, [tex]A= width \times height=1.25 mm\times 0.5 mm=0.625 mm^2[/tex]
Hence, [tex]R=\frac{1.0\times10^{-3}\Omega m \times 2\times10^{-3}m}{0.625\times10^{-6}m^2}=3.2\Omega[/tex]
We know, Power, [tex]P=I^2R[/tex]
[tex]\Rightarrow I=\sqrt{\frac{P}{R}}[/tex]
[tex]P=7.81 W[/tex]
[tex] I=\sqrt{\frac {7.81 W}{3.2\Omega}}=\sqrt{2.44}A=1.56A[/tex]
We know, Voltage, [tex]V=IR=1.56\times3.2=4.99 V[/tex]