You are given a semiconductor resistor made from silicon with an impurity concentration of resistivity 1.00×10−3ωm. the resistor has a height of h =0.5 mm, a length of l = 2 mm, and a width of w = 1.25 mm. the resistor can absorb (dissipate) up to p = 7.81w. what is the resistance of the resistor (r), the maximum voltage (v), and the maximum current (i)?

Respuesta :

Answer: Resistance =[tex]3.2 \Omega[/tex] , Current = 1.56 A, Voltage =4.99 V

The resistance,

[tex]R=\frac {\rho l}{A}[/tex]

where, [tex] \rho[/tex] is resistivity, A is the area and l is the length of the resistor.

It is given that:

[tex]\rho=1.0\times10^{-3}\Omega m[/tex]

Length, l=2 mm

Area, [tex]A= width \times height=1.25 mm\times 0.5 mm=0.625 mm^2[/tex]

Hence, [tex]R=\frac{1.0\times10^{-3}\Omega m \times 2\times10^{-3}m}{0.625\times10^{-6}m^2}=3.2\Omega[/tex]

We know, Power, [tex]P=I^2R[/tex]

[tex]\Rightarrow I=\sqrt{\frac{P}{R}}[/tex]

[tex]P=7.81 W[/tex]

[tex] I=\sqrt{\frac {7.81 W}{3.2\Omega}}=\sqrt{2.44}A=1.56A[/tex]

We know, Voltage, [tex]V=IR=1.56\times3.2=4.99 V[/tex]