The length of a rectangle is 3 cm greater than its width. The perimeter is 24 cm. Find the dimensions of the rectangle. 3 cm, 9 cm 4.5 cm, 7.5 cm 7.5 cm, 10.5 cm 10.5 cm, 13.5 cm

Respuesta :

Length (L): w + 3

width (w): w

Perimeter (P) = 2L + 2w

                24 = 2(w + 3) + 2(w)

                24 = 2w + 6 + 2w

                24 = 4w + 6

                18 = 4w

                18/4 = w

                9/2 = w

                4.5 = w

Length (L): w + 3   = 4.5 + 3   = 7.5

Answer: width = 4.5 cm, length = 7.5 cm

Lanuel

The dimensions of the rectangle are; B. 4.5 cm, 7.5 cm.

  • Let the length of the rectangle be L.
  • Let the width of the rectangle be W.

Given the following data:

  • Perimeter = 24 cm

Translating the word problem into an algebraic equation, we have;

[tex]L = W + 3[/tex]

To find the dimensions of the rectangle;

Mathematically, the perimeter of a rectangle is given by the formula;

[tex]Perimeter = 2(L + W)[/tex]

Substituting the values into the formula, we have;

[tex]24 = 2(W + 3 + W)[/tex]

[tex]24 = 2(2W + 3)[/tex]

Opening the bracket, we have;

[tex]24 = 4W + 6[/tex]

[tex]4W = 24 - 6\\\\4W = 18\\\\W = \frac{18}{4}[/tex]

Width, W = 4.5 cm

Next, we would find the value of L;

[tex]L = W + 3[/tex]

Substituting the value of W, we have;

[tex]L = 4.5 + 3[/tex]

Length, L = 7.5 cm

Therefore, the dimensions of the rectangle are 4.5 cm and 7.5 cm.

Find more information: brainly.com/question/897975