Respuesta :
Applied force is Fh at an angle theta with the horizontal
now we will have its components
[tex]F_x = F_h cos\theta[/tex]
[tex]F_y = F_h sin\theta[/tex]
now in order to find the normal force
we will have
[tex]N = mg + F_h sin\theta[/tex]
now we can find friction force
[tex]F_f = \mu N[/tex]
[tex]F_f = \mu * (mg + F_h sin\theta)[/tex]
now in order to move the lawn mover
[tex]F_hcos\theta = F_f[/tex]
[tex]F_h cos\theta = \mu *(mg + F_h sin\theta)[/tex]
now we will have
[tex]F_h(cos\theta - \mu sin\theta) = \mu mg[/tex]
[tex]F_h = \frac{\mu mg}{cos\theta - \mu sin\theta}[/tex]
so above is the force on it
The magnitude [tex]\mathbf{f_h }[/tex] of the force required to slide the lawnmower over the ground is [tex]\mathbf{F_h = \dfrac{\mu mg}{(cos \theta - \mu sin \theta)}}[/tex]
Consider the movement of the lawnmower of mass (m) which slides across a horizontal surface in the horizontal direction;
In the horizontal direction, the net force is:
[tex]\mathbf{- F_h cos \theta + \mu N = 0}[/tex]
where;
- [tex]f_h =[/tex] the force exerted by the handle
In the vertical direction, the net force is:
[tex]\mathbf{mg +F_h sin \theta = N}[/tex]
replacing the value of N in the second expression into the first part, then we have:
[tex]\mathbf{- F_h cos \theta + \mu N = 0}[/tex]
[tex]\mathbf{F_h cos \theta = \mu N}[/tex]
[tex]\mathbf{F_h cos \theta = \mu (mg +F_h sin \theta)}[/tex]
[tex]\mathbf{F_h (cos \theta- \mu sin \theta ) = \mu mg }[/tex]
[tex]\mathbf{F_h = \dfrac{ \mu mg }{(cos \theta- \mu sin \theta )}}[/tex]
Therefore, we can conclude that the magnitude [tex]\mathbf{f_h }[/tex] of the force required to slide the lawnmower over the ground is [tex]\mathbf{F_h = \dfrac{\mu mg}{(cos \theta - \mu sin \theta)}}[/tex]
Learn more about the magnitude of the force here:
https://brainly.com/question/9774180?referrer=searchResults