Respuesta :
Answer: 1.98\times10^{-13}m[/tex]
We need to find the wavelength of the deutrons which are travelling with a velocity of [tex]1\times10^6m/s[/tex]. we would use de-Broglie's formula which relates momentum of the particle with its wavelength.
[tex]\lambda=\frac{h}{mv}[/tex]
where, h = Planck's constant
m is the mass
v is the velocity
and [tex]\lambda[/tex] is the wavelength.
Deutron has 1 neutron and 1 proton.
Mass of deutron is [tex]2\times 1.67\times10^{-27} kg=3.34\times10^{-27} kg[/tex] (because of mass of proton =mass of neutron = [tex]1.67\times10^{-27}kg[/tex]
[tex]\Rightarrow \lambda=\frac{6.626\times10^{-34}J.s}{3.34\times10^{-27}kg\times10^6m/s}=1.98\times10^{-13}m[/tex]
Therefore, the wavelength of the deutrons travelling with the speed [tex]10^6 m/s[/tex] is [tex]1.98\times10^{-13}m[/tex]
Answer: 2×10⁻¹³ m
Explanation:
1) Data:
- particle: deuteron nucleus, ²₁H
- λ = ?
- v = 1×10⁶m/s
2) Formula
- De Broglie's equation: (λ):
λ = h/(m×v)
Where h is the Planck constant, h = 6.626×10⁻³⁴ J s
- mass of a nucleus = mass of protons + mass of neutrons
3) Solution:
a) mass of ²₁H
- ²₁H ⇒ 1 neutron and 1 proton ⇒
- m = 1.675×10⁻²⁷kg + 1.673×10⁻²⁷kg = 3.348×10⁻²⁷ kg
b) wavelength
- λ = h/(m×v) = 6.626×10⁻³⁴ / [(3.348×10⁻²⁷)×(1×10⁶)] = 1.98×10⁻¹³ m
- Round to one significant figure: 2×10⁻¹³ m