In order for a thermonuclear fusion reaction of two deuterons (21h+) to occur, the deuterons must collide each with a velocity of about 1×106m/s. what is the wavelength?

Respuesta :

Answer: 1.98\times10^{-13}m[/tex]

We need to find the wavelength of the deutrons which are travelling with a velocity of [tex]1\times10^6m/s[/tex].  we would use de-Broglie's formula which relates momentum of the particle with its wavelength.

[tex]\lambda=\frac{h}{mv}[/tex]

where, h = Planck's constant

m is the mass

v is the velocity

and [tex]\lambda[/tex] is the wavelength.

Deutron has 1 neutron and 1 proton.

Mass of deutron is [tex]2\times 1.67\times10^{-27} kg=3.34\times10^{-27} kg[/tex] (because of mass of proton =mass of neutron = [tex]1.67\times10^{-27}kg[/tex]

[tex]\Rightarrow \lambda=\frac{6.626\times10^{-34}J.s}{3.34\times10^{-27}kg\times10^6m/s}=1.98\times10^{-13}m[/tex]

Therefore, the wavelength of the deutrons travelling with the speed [tex]10^6 m/s[/tex] is [tex]1.98\times10^{-13}m[/tex]

Answer: 2×10⁻¹³ m


Explanation:


1) Data:

  • particle: deuteron nucleus, ²₁H
  • λ = ?
  • v = 1×10⁶m/s

2) Formula

  • De Broglie's equation:  (λ):

           λ = h/(m×v)

           Where h is the Planck constant, h = 6.626×10⁻³⁴ J s

  • mass of a nucleus = mass of protons + mass of neutrons

3) Solution:


a) mass of ²₁H
  • ²₁H ⇒ 1 neutron and 1 proton ⇒
  • m = 1.675×10⁻²⁷kg + 1.673×10⁻²⁷kg = 3.348×10⁻²⁷ kg

b) wavelength

  • λ = h/(m×v) = 6.626×10⁻³⁴ / [(3.348×10⁻²⁷)×(1×10⁶)] = 1.98×10⁻¹³ m
  • Round to one significant figure: 2×10⁻¹³ m