Respuesta :

To calculate the threshold frequency of the metal we use the formula,

[tex]E=h\nu_{o}[/tex]

Also, [tex]\nu_{o}=\frac{E}{h}[/tex]

Here, E is the energy of electron per atom, h is plank constant.

Given, binding energy of electron  [tex]E=192kJ/mol[/tex] or for one electron,[tex]E=\frac{192 kJ/mol}{N}[/tex], here N is the Avogadro constant and its value is [tex]6.023\times10^{23}[/tex], so [tex]E=\frac{192\times10^3 J}{6.023\times10^{23}}=3.19\times10^{-19}  J[/tex] and plank constant,  [tex]h=6.626\times10^{-34} Js[/tex]

Substituting these values in above relation we get,

[tex]\nu _{o} =\frac{3.19 \times10^{-19J} }{6.626 \times 10^{-34}Js } =4.81\times 10^{14} Hz[/tex].

Thus, the threshold frequency of the metal is [tex]4.81 \times 10^{14} Hz[/tex].