A current of 0.86 a flows through a copper wire 0.47 mm in diameter when it is connected to a potential difference of 15 v. how long is the wire?

Respuesta :

To calculate the length of the wire, we use formulas,

[tex]R = \frac{V}{I}[/tex]                                       (A)

[tex]R= \rho  \frac{l}{A}[/tex]                                (B)

Here, R is the resistance of the wire, I is the current flows through wire and V is potential difference. A is cross sectional area of wire and [tex]\rho[/tex] is the density of copper wire and is value,[tex]\rho = 1.7\times 10^{-8} \Omega m[/tex].

Given    [tex]I = 0.86 A,V=15 V and  r = \frac{0.47 mm}{2} =2.35 \times 10^{-4} m, V= 15 V.[/tex]

Substituting the values of I and V in equation (A ) we get,

[tex]R=\frac{15V}{0.86A} = 17.44 \Omega[/tex]

Now from equation (B),

[tex]l=\frac{R A}{\rho }[/tex]

Therefore,

[tex]l= \frac{17.44\times\pi \times r^2  }{1.7\times 10^{8} \Omega m} \\\\ l= \frac{17.44\times 3.14 \times(2.35\times10^{-4}m)^2  }{1.7\times 10^{-8} \Omega m} = 177.9 m[/tex]

Thus the length of the copper wire is 177.9 m.