Respuesta :
Hello!
To find the midpoint, use the formula: [tex](\frac{x_{1}+x_{2} }{2}, \frac{y_{1}+ y_{2} }{2})[/tex].
Before using the formula, you must assign ordered pairs to x1, y1 and x2, y2. For this problem, (-4, 4) can be (x1, y1) and (5, -1) is (x2, y2).
[tex](\frac{-4+5}{2}, \frac{-1 + 4}{2}) = (\frac{1}{2}, \frac{3}{2})[/tex].
Therefore, the midpoint of (-4, 4) and (5, -1) is (1/2, 3/2).
So, the required mid points are:
[tex] \sf \blue{ \frac{1}{2} \: and \: \frac{3}{2}}[/tex]
Step-by-step explanation:
As, we know that. The formula to find mid point is:
[tex] \sf \green{ (\frac{ {x}_{1} + {x}_{2} }{2}, \frac{ {y}_{1} + {y}_{2} }{2} )}[/tex]
Here, [tex]\sf{x_{1}}[/tex] = - 4
[tex]\sf{x_{2}}[/tex] = 5
[tex]\sf{y_{1}}[/tex] = 4
[tex]\sf{y_{2}}[/tex] = - 1
According to the formula given above,
[tex] \sf \green{ (\frac{ {x}_{1} + {x}_{2} }{2}, \frac{ {y}_{1} + {y}_{2} }{2} )} \\ \\ \green \leadsto (\frac{ - 4 + 5}{2}, \frac{4 + ( - 1)}{2}) \\ \\ \green \leadsto( \frac{1}{2}, \frac{4 - 1}{2} ) \\ \\ \green\leadsto( \frac{1}{2}, \frac{3}{2})[/tex]
By using the formula, we can solve the problem easily.