Given positions are
[tex]x = 18 t[/tex]
[tex]y = 4 t - 4.9 t^2[/tex]
part a)
position vector is given as
[tex]\vec r = x \hat i + y \hat j[/tex]
[tex]\vec r = 18 t\hat i + (4 t - 4.9 t^2) \hat j[/tex]
part b)
velocity is given as
[tex] v = \frac{dr}{dt}[/tex]
now by differentiation of above equation
[tex] v = 18 \hat i + (4 - 9.8 t)\hat j[/tex]
Part c)
For the acceleration we can use
[tex]a = \frac{dv}{dt}[/tex]
so here it is
[tex]a = 0 \hat i - 9.8 \hat j[/tex]
Part d)
at t = 3 s
[tex]\vec r = 54\hat i - 32.1 \hat j[/tex]
[tex]\vec v = 18 \hat i - 25.4 \hat j[/tex]
[tex] \vec a = - 9.8 \hat j[/tex]