Respuesta :
Given
[tex]\vec{a}=2\vec{i}-\vec{j}+5\vec{k},[/tex]
[tex]\vec{b}=\vec{i}+2\vec{j}+4\vec{k},[/tex]
you can find
[tex]\vec{a}-\vec{b}=2\vec{i}-\vec{j}+5\vec{k}-(\vec{i}+2\vec{j}+4\vec{k})=\vec{i}-3\vec{j}+\vec{k}.[/tex]
Three vectors [tex]\vec{a}, \vec{b}, \vec{a}-\vec{b}[/tex] form a triangle.
1.
[tex]\cos\angle 1=\dfrac{\vec{a}\cdot \vec{b}}{|\vec{a}|\cdot |\vec{b}|}=\dfrac{2\cdot 1+(-1)\cdot 2+5\cdot 4}{\sqrt{2^2+(-1)^2+5^2}\cdot \sqrt{1^2+2^2+4^2} }=\dfrac{20}{\sqrt{30} \cdot \sqrt{21} }.[/tex]
2.
[tex]\cos\angle 2=\dfrac{\vec{a}\cdot (\vec{a}-\vec{b})}{|\vec{a}|\cdot |\vec{a}-\vec{b}|}=\dfrac{2\cdot 1+(-1)\cdot (-3)+5\cdot 1}{\sqrt{2^2+(-1)^2+5^2}\cdot \sqrt{1^2+(-3)^2+1^2} }=\dfrac{10}{\sqrt{30} \cdot \sqrt{11} }.[/tex]
3.
[tex]\cos\angle 3=\dfrac{\vec{b}\cdot (\vec{a}-\vec{b})}{|\vec{b}|\cdot |\vec{a}-\vec{b}|}=\dfrac{1\cdot 1+2\cdot (-3)+4\cdot 1}{\sqrt{1^2+2^2+4^2}\cdot \sqrt{1^2+(-3)^2+1^2} }=\dfrac{-1}{\sqrt{21} \cdot \sqrt{11} }.[/tex]
Then
- [tex]\angle 1=\arccos \left(\dfrac{20}{\sqrt{30} \cdot \sqrt{21} }\right)\approx 37.17^{\circ};[/tex]
- [tex]\angle 2=\arccos \left(\dfrac{10}{\sqrt{30} \cdot \sqrt{11} }\right)\approx 56.60^{\circ};[/tex]
- [tex]\angle 3=\arccos \left(\dfrac{-1}{\sqrt{21} \cdot \sqrt{11} }\right)\approx 93.77^{\circ}.[/tex]