For what value of the ratio r/a of plate radius to separation between the plates does the electric field at the point x=a/2 on the x axis differ by 1 percent from the result η/ϵ0 for infinite sheets?

Respuesta :

solution:

E\delta =\frac{R}{\epsilon0}(1-\frac{A}{\sqrt{4R^{2}}-ac}

=\frac{R}{\epsilon0}(1-\frac{1}{\sqrt{4r^{2}/^{_a{2}}+1}})

=\frac{R}{\epsilon0}(1-\frac{1}{\sqrt{4x^2+1}})

x=\frac{r}{a}

infinite case,

Ei=\frac{r}{\epsilon0}

\therefore e\delta =ei(1-\frac{1}{\sqrt{4x^{2}+1}})

we have to find x when,

ei-e\delta =1% ,y=ei=1/100 ei

or,ei-ei+\frac{ei}{\sqrt{4x^2+1}} = 1/100ei

\frac{1}{\sqrt{4x^2+1}}=\frac{1}{100}

4x^2+1 =10^4

x=\frac{\sqrt{\frac{10^4-1}{4}}}=49.99\approx 50

\therefore \frac{r}{a}\approx 50