Solution: We are given:
[tex]\mu=100,\sigma=15[/tex]
We have to find the amount of water that represents the top 97.5%.
We need to find the z value corresponding to probability to 0.975. Using the standard normal table, we have:
[tex]z(0.975)=1.96[/tex]
Now using the z score formula, we have:
[tex]z=\frac{x-\mu}{\sigma}[/tex]
[tex]1.96=\frac{x-100}{15}[/tex]
[tex]1.96 \times 15 = x-100[/tex]
[tex]29.4=x-100[/tex]
[tex]x=100+29.4 = 129.4[/tex]
Therefore, 129.4 ounces amount of water represents the top 97.5%