Evaluate the function at the given value of the independent variable. simplify the results. f(x) = x3 f(x + δx) − f(x) δx (δx ≠ 0)

Respuesta :

we are given

[tex]f(x)=x^3[/tex]

Firstly, we will find f(x+delta x)

[tex]f(x+\delta x)=(x+\delta x)^3[/tex]

now, we can plug this in formula

[tex]\frac{f(x+\delta x)-f(x)}{\delta x}[/tex]

[tex]\frac{f(x+\delta x)-f(x)}{\delta x}=\frac{(x+\delta x)^3-(x)^3}{\delta x}[/tex]

now, we can simplify it

[tex]=\frac{x^3+(\delta x)^3+3x^2\delta x+3(\delta x)^2x-x^3}{\delta x}[/tex]

now, we can simplify it

[tex]=\frac{(\delta x)^3+3x^2\delta x+3(\delta x)^2x}{\delta x}[/tex]

[tex]=\frac{\delta x ((\delta x)^2+3x^2+3(\delta x)x)}{\delta x}[/tex]

we can cancel it

[tex]=(\delta x)^2+3x^2+3(\delta x)x[/tex]...........Answer

Otras preguntas