Respuesta :

I would say that the answer is B

Answer:

Option B is correct.

u= x+4

Step-by-step explanation:

Solve the equation:

[tex](x+4)^2-3(x+4)-3 = 0[/tex]

Using substitution:

Let u = x+4

then;

[tex]u^2-3u-3=0[/tex]         ....[1]

For a quadratic equation [tex]ax^2+bx+c = 0[/tex] ....[2], then the solution is given by:

[tex]x = \frac{-b \pm \sqrt{b^2-4ac}}{2a}[/tex]

On comparing equation [1] and [2] we have;

a = 1 , b = -3 and c = -3

then;

[tex]u= \frac{-(-3) \pm \sqrt{(-3)^2-4(1)(-3)}}{2(1)}[/tex]

⇒[tex]u= \frac{3 \pm \sqrt{9+12}}{2}[/tex]

⇒[tex]u= \frac{3 \pm \sqrt{21}}{2}[/tex]

Substitute u = x+4

then;

⇒[tex]x+4= \frac{3 \pm \sqrt{21}}{2}[/tex]

Subtract 4 from both sides we have;

[tex]x= \frac{3 \pm \sqrt{21}}{2} - 4= \frac{3 \pm \sqrt{21}-8}{2}[/tex]

⇒[tex]x= \frac{3 + \sqrt{21}-8}{2}= \frac{-5 + \sqrt{21}}{2}[/tex]

and

[tex]x= \frac{3 - \sqrt{21}-8}{2}[/tex]

⇒[tex]x= \frac{-5 - \sqrt{21}}{2}[/tex]

Therefore, the solution for the given equation are,

[tex]x= \frac{-5 - \sqrt{21}}{2}[/tex] , [tex]\frac{-5 + \sqrt{21}}{2}[/tex]