[tex]\bf ~\hspace{7em}\textit{negative exponents} \\\\ a^{-n} \implies \cfrac{1}{a^n} ~\hspace{4.5em} a^n\implies \cfrac{1}{a^{-n}} ~\hspace{4.5em} \cfrac{a^n}{a^m}\implies a^na^{-m}\implies a^{n-m} \\\\[-0.35em] \rule{34em}{0.25pt}\\\\ \left( \cfrac{8\cdot 4\cdot 2}{8\cdot 7} \right)^2\times \left( \cfrac{8^0}{7^{-3}} \right)^3\times 7^{-9}\implies \left( \cfrac{8\cdot 8}{8\cdot 7} \right)^2\times \left( \cfrac{1\cdot 7^3}{1} \right)^3\times \cfrac{1}{7^9}[/tex]
[tex]\bf \left( \cfrac{8}{8}\cdot \cfrac{8}{7} \right)^2\times (7^3)^3\times \cfrac{1}{7^9}\implies \left( \cfrac{8}{7} \right)^2\times 7^{3\cdot 3}\times \cfrac{1}{7^9}\implies \cfrac{8^2}{7^2}\times \cfrac{7^9}{7^9} \\\\\\ \cfrac{8^2}{7^2}\implies \cfrac{64}{49}[/tex]