We are to show that if X ⊆ Y then (X ∪ Z) ⊆ (Y ∪ Z) for sets X, Y, Z.
Assume that a is a representative element of X, that is, a ∈ X. By the definition of union, a ∈ X ∪ Z. Now because X ⊆ Y and we assumed a ∈ X, then a ∈ Y by the definition of subset. And because a ∈ Y, then a ∈ Y ∪ Z by definition of union.
We chose our representative element, a, and showed that a ∈ X ∪ Y implies that a ∈ Y ∪ Z and this completes the proof.