Respuesta :

Answer:

[tex]\angle PZQ=63^{\circ}[/tex]

Step-by-step explanation:

We are given that point P is interior of angle OZQ.

We are given that angle OZQ =[tex]125^{\circ}[/tex]

The measure of angle OZP=[tex]62^{\circ}[/tex]

Angle OZQ=Angle OZP+Angle PZQ

Substitute the values

Then, we get

[tex]62+\angle PZQ=125[/tex]

[tex]\Angle PZQ=125-62[/tex]

Using by subtraction property of equality

[tex]\angle PZQ=63^{\circ}[/tex]

The measure of  m∠PZQ is 63degrees

The point where two lines meet or intersect is known as an angle.

If point P is in the interior of ∠OZQ, then:

<OZQ = <OZP +  m∠PZQ

Given the following angles:

m∠OZQ = 125°

m∠OZP = 62°

Substitute the given values into the expression above:

125 = 62 +  m∠PZQ

m∠PZQ = 125 - 62

m∠PZQ = 63degrees

Hence the measure of  m∠PZQ is 63degrees

Learn more here: https://brainly.com/question/17247176