A fudge recipe calls for 2 1/3 cups of flour for every 3/4 cups of cocoa powder. Could you increase the recipe proportionately by using 4 2/3 cups of flour and 1 1/2 cups of cocoa?

Respuesta :

same as before, is the proportion of one, the same as the other?  let's do the same here without much fuss.


[tex]\bf \stackrel{mixed}{2\frac{1}{3}}\implies \cfrac{2\cdot 3+1}{3}\implies \stackrel{improper}{\cfrac{7}{3}} ~\hfill \stackrel{mixed}{4\frac{2}{3}}\implies \cfrac{4\cdot 3+2}{3}\implies \stackrel{improper}{\cfrac{14}{3}}[/tex]


[tex]\bf \stackrel{mixed}{1\frac{1}{2}}\implies \cfrac{1\cdot 2+1}{2}\implies \stackrel{improper}{\cfrac{3}{2}} \\\\[-0.35em] \rule{34em}{0.25pt}\\\\ \cfrac{~~2\frac{1}{3}~~}{\frac{3}{4}}=\cfrac{~~4\frac{2}{3}~~}{1\frac{1}{2}}\implies \cfrac{~~\frac{7}{3}~~}{\frac{3}{4}}=\cfrac{~~\frac{14}{3}~~}{\frac{3}{2}}\implies \cfrac{7}{3}\cdot \cfrac{4}{3}=\cfrac{14}{3}\cdot \cfrac{2}{3}\implies \cfrac{28}{9}=\cfrac{28}{9}~~\textit{\Large \checkmark}[/tex]