Respuesta :
Answer:
18 cm
Step-by-step explanation:
Given: In the right [tex]\Delta \text{ABC}[/tex], CD is the altitude to the hypotenuse AB and [tex]m\angle \text{ABC}=30^{\circ}[/tex], [tex]\text{BD}=54[/tex] cm.
To find: AD
Solution: Consider the figure in the attached file.
In [tex]\Delta \text{BDC}[/tex]
[tex]\text{cos\:30}^{\circ}=\frac{54}{BC}[/tex]
[tex]\frac{\sqrt{3} }{2}=\frac{54}{BC}[/tex]
[tex]\text{BC}=36\sqrt{3}[/tex]
Now, In [tex]\Delta \text{ACB}[/tex]
[tex]\text{cos\:30}^{\circ}=\frac{BC}{AB}[/tex]
[tex]\frac{\sqrt{3} }{2}=\frac{36\sqrt{3}}{AB}[/tex]
[tex]\text{AB}=36\sqrt{3}\times\frac{2}{\sqrt{3} }[/tex]
[tex]\text{AB}=72[/tex]
Now, [tex]\text{AB}=\text{AD}+\text{BD}[/tex]
[tex]\text{AB}=\text{AD}+54[/tex]
[tex]72=\text{AD}+54[/tex]
[tex]\text{AD}=72-54[/tex]
[tex]\text{AD}=18[/tex] cm
Hence, [tex]\text{AD}=18[/tex] cm.

The sides of a right-angled triangle can be calculated using trigonometry ratios.
The length of AD is 18 cm
Given that:
[tex]\angle ABC = 30^o[/tex]
[tex]BD = 54cm[/tex]
See attachment for [tex]\triangle ABC[/tex]
First, we calculate CD using the tangent ratio
[tex]\tan(\theta) = \frac{Opposite}{Adjacent}[/tex]
So, we have:
[tex]\tan(30) = \frac{CD}{54}[/tex]
Make CD the subject
[tex]CD = 54 \times \tan(30)[/tex]
[tex]CD = 54\tan(30)[/tex]
Next, AD will be calculated using tangent ratio
[tex]\tan(\theta) = \frac{Opposite}{Adjacent}[/tex]
So, we have:
[tex]\tan(60) = \frac{CD}{AD}[/tex]
Make AD the subject
[tex]AD = \frac{CD}{\tan(60)}[/tex]
Substitute [tex]CD = 54\tan(30)[/tex]
[tex]AD = \frac{54\tan(30)}{\tan(60)}[/tex]
[tex]AD = 18[/tex]
Hence, side length AD is 18 cm
Read more about right-angled triangles at:
https://brainly.com/question/3770177
