Yuii
contestada

PLEASE HELP ASAP!!! CORRECT ANSWER ONLY PLEASE!!!

Factor the expression over the complex numbers.

y2 + 49

PLEASE HELP ASAP CORRECT ANSWER ONLY PLEASE Factor the expression over the complex numbers y2 49 class=

Respuesta :

gmany

[tex]Use\\\\a^2-b^2=(a-b)(a+b)\\\\i=\sqrt{-1}\to i^2=-1\\\\y^2+49=y^2+7^2=y^2-(-1)(7^2)=y^2-(7i)^2\\\\=(y-7i)(y+7i)[/tex]

Answer:

[tex]y^2+49=(y-7i)(y+7i)[/tex]

Step-by-step explanation:

Given : Expression [tex]y^2+49[/tex]

To find : Factor the expression over the complex numbers ?

Solution :

To factor the expression we equate it to zero and find the values of y,

[tex]y^2+49=0[/tex]

Subtract 49 both side,

[tex]y^2=-49[/tex]

Taking root both side,

[tex]y=\sqrt{-49}[/tex]

We know, [tex]\sqrt{-1}=i,\ \sqrt{49}=7[/tex]

[tex]y=\pm 7i[/tex]

The factors are [tex](y-7i)(y+7i)[/tex]

Therefore, [tex]y^2+49=(y-7i)(y+7i)[/tex]