Respuesta :

sid071

Solving    -x2+12x+12 = 0 by the Quadratic Formula .


According to the Quadratic Formula,  x  , the solution for   Ax2+Bx+C  = 0  , where  A, B  and  C  are numbers, often called coefficients, is given by :

                                   

           - B  ±  √ B2-4AC

 x =   ————————

                     2A


 In our case,  A   =     -1

                     B   =    12

                     C   =   12


Accordingly,  B2  -  4AC   =

                    144 - (-48) =

                    192


Applying the quadratic formula :


              -12 ± √ 192

  x  =    ——————

                     -2


Can  √ 192 be simplified ?


Yes!   The prime factorization of  192   is

  2•2•2•2•2•2•3  

To be able to remove something from under the radical, there have to be  2  instances of it (because we are taking a square i.e. second root).


√ 192   =  √ 2•2•2•2•2•2•3   =2•2•2•√ 3   =

               ±  8 • √ 3


 √ 3   , rounded to 4 decimal digits, is   1.7321

So now we are looking at:

          x  =  ( -12 ± 8 •  1.732 ) / -2


Two real solutions:


x =(-12+√192)/-2=6-4√ 3 = -0.928


or:


x =(-12-√192)/-2=6+4√ 3 = 12.928



x =(-12-√192)/-2=6+4√ 3 = 12.928

x =(-12+√192)/-2=6-4√ 3 = -0.928

These are the two solutions

Hope my answer helps!