Respuesta :

frika

Let point O be the midpoint of a segment P₁P₂. Then point O has coordinates (-6,5). You also know coordinates (-9,7) of point P₁.

Use formula for midpoint's coordinates:

[tex]x_O=\dfrac{x_{P_1}+x_{P_2}}{2} \text{  and  } y_O=\dfrac{y_{P_1}+y_{P_2}}{2}.[/tex]

Substituting known coordinates, you get:

[tex]-6=\dfrac{-9+x_{P_2}}{2} \text{  and  } 5=\dfrac{7+y_{P_2}}{2}.[/tex]

Thus,

[tex]x_{P_2}=-6\cdot 2+9=-12+9=-3,\\ \\y_{P_2}=5\cdot 2-7=10-7=3.[/tex]

Answer: [tex]P_2(-3,3).[/tex]

Let's assume P2 point be (a,b)

P2=(a,b)

The midpoint of the line segment from P1 to P2 is (-6,5)

P1=(-9,7)

so, firstly, we will find mid-point between P1 and P2

we get

[tex]=(\frac{-9+a}{2},\frac{7+b}{2})[/tex]

now, this point must be (-6,5)

so, we can set it equal

[tex](-6,5)=(\frac{-9+a}{2},\frac{7+b}{2})[/tex]

now, we can compare x-values and y-values

we get

[tex]-6=\frac{-9+a}{2}[/tex]

we can solve for a

[tex]-6*2=-9+a[/tex]

[tex]-12=-9+a[/tex]

[tex]-12+9=-9+a+9[/tex]

[tex]a=-3[/tex]

now, we can compare y-value

[tex]5=\frac{7+b}{2}[/tex]

[tex]5*2=\frac{7+b}{2}*2[/tex]

[tex]10=7+b[/tex]

[tex]10-7=7+b-7[/tex]

[tex]b=3[/tex]

so, we will get

P2=(a,b)

P2=(-3,3)...............Answer