Respuesta :

a) 0 = x⁴ - 81

   0 = (x² - 9)(x² + 9)

   0 = (x - 3)(x + 3)(x² + 9)  

0 = x - 3  ,  0 = x + 3  ,  0 = x² + 9

  x = 3    ,       x = -3   ,      x² = -9 →  x = √-9  →  x = +/- 3i

Answer: real roots 3, 3  ; complex roots 3i, -3i

b) 0 = x⁴ + 10x² + 25

   0 = (x² + 5)²

0 = x² + 5

x² = -5  →  x = +/-√-5  →  x = +/- i√5

Answer: no real roots  ; complex roots i√5, -i√5

c) 0 = x⁴ - x² - 6

  0 = (x² - 3)(x² + 2)

0 = x² - 3                       0 = x² + 2

x² = 3  → x = +/-√3        x² = -2  →  x = +/-√-2  →  x = +/-i√2

Answer: real roots √3, -√3; complex roots i√2, -i√2

Answer:

A. x= 3 x=-3

B. No solution

C. x=[tex]\sqrt{3}[/tex]

Step-by-step explanation:

To answer the first one you just have to factorize into conjugate binomials.

[tex]x^{4}-81[/tex]= [tex](x^{2} +9)[/tex][tex](x^{2} -9)[/tex]

(x-3)(x+3)[tex](x^{2} +9)[/tex]

Now you put the binomials in the parenthesis and equal them to 0.

x-3=0

x=3

x+3=0

x=-3

[tex](x^{2} +9)[/tex]=0

[tex]x^{2}[/tex]=-9

x=[tex]\sqrt{-9}[/tex]

Since the square root of a negative number aint possible the only solutions for the equation are x=3 and x=-3

For the second one you just factorize it into two factors:

[tex]x^{4}+20x^{2}+25[/tex]= [tex](x^{2} +5)(x^{2} +5)[/tex]

Since both solutions end up in x=[tex]\sqrt{-5}[/tex] is an imaginary number and it has no solution.

The last one is also factorized into two binomials.

[tex]x^{4}-x^{2}-6[/tex]=[tex](x^{2} -3)(x^{2} +2)[/tex]

Now we put the content of the parenthesis into an equation.

[tex]x^{2} +2=0\\x^{2} -3=0[/tex]

Since the +2 will end up ina negative square root it is not possible.

So the only answer for this is x=[tex]\sqrt{3}[/tex]