Respuesta :

Simplifying the given equation ⤵


➡ z² - z( z + 3 ) + 3z


=> z² - z( z ) - z( 3 ) + 3z


=> z² - ( z × z ) - ( z × 3 ) + 3z


=> z² - z² - 3z + 3z


[tex] = > \cancel{ {z}^{2} } - \cancel{ {z}^{2} } + \cancel{3z} - \cancel{3z}[/tex]


=> 0





Hence, option ( d ) is correct that is 0

For this case we have the following expression:

[tex]z ^ 2 - z (z + 3) + 3z[/tex]

By doing distributive property we have:

[tex]z ^ 2 - z ^ 2 - 3z + 3z[/tex]

Then adding similar terms we have:

 [tex](z ^ 2 - z ^ 2) + (- 3z + 3z)[/tex]

Rewriting:

[tex](0) + (0)[/tex]

Therefore, the simplified expression is:

 [tex]0[/tex]

Answer:

The simplified expression is:

d. 0