Respuesta :
Simplifying the given equation ⤵
➡ z² - z( z + 3 ) + 3z
=> z² - z( z ) - z( 3 ) + 3z
=> z² - ( z × z ) - ( z × 3 ) + 3z
=> z² - z² - 3z + 3z
[tex] = > \cancel{ {z}^{2} } - \cancel{ {z}^{2} } + \cancel{3z} - \cancel{3z}[/tex]
=> 0
Hence, option ( d ) is correct that is 0
➡ z² - z( z + 3 ) + 3z
=> z² - z( z ) - z( 3 ) + 3z
=> z² - ( z × z ) - ( z × 3 ) + 3z
=> z² - z² - 3z + 3z
[tex] = > \cancel{ {z}^{2} } - \cancel{ {z}^{2} } + \cancel{3z} - \cancel{3z}[/tex]
=> 0
Hence, option ( d ) is correct that is 0
For this case we have the following expression:
[tex]z ^ 2 - z (z + 3) + 3z[/tex]
By doing distributive property we have:
[tex]z ^ 2 - z ^ 2 - 3z + 3z[/tex]
Then adding similar terms we have:
[tex](z ^ 2 - z ^ 2) + (- 3z + 3z)[/tex]
Rewriting:
[tex](0) + (0)[/tex]
Therefore, the simplified expression is:
[tex]0[/tex]
Answer:
The simplified expression is:
d. 0