A subway train moving at 75 m/s begins to accelerate at a rate of -2.5 m/s squared for 5.0 seconds. It then travels at a constant speed for 100.0 seconds. It finally slows down to a stop at -5 m/s squared. Find the total distance covered and any other values needed to determine the total distance.

Respuesta :

For the first 5.0 seconds of its motion, the train covers a distance of

[tex]\left(75\,\dfrac{\mathrm m}{\mathrm s}\right)(5.0\,\mathrm s)+\dfrac12\left(-2.5\,\dfrac{\mathrm m}{\mathrm s}\right)(5.0\,\mathrm s)^2=344\,\mathrm m[/tex]

After the first 5.0 seconds, the train's velocity is

[tex]75\,\dfrac{\mathrm m}{\mathrm s}+\left(-2.5\,\dfrac{\mathrm m}{\mathrm s^2}\right)(5.0\,\mathrm s)=62.5\,\dfrac{\mathrm m}{\mathrm s}[/tex]

For the next 100.0 seconds, the trains covers a distance of

[tex]\left(62.5\,\dfrac{\mathrm m}{\mathrm s}\right)(100.0\,\mathrm s)=6250\,\mathrm m[/tex]

and thus a total distance of 6594 meters.

After the first 105.0 seconds, the train's velocity [tex]v[/tex] at time [tex]t[/tex] (where [tex]t=0[/tex] corresponds to the 105.0 second mark) is given by

[tex]v(t)=62.5\,\dfrac{\mathrm m}{\mathrm s}+\left(-5\,\dfrac{\mathrm m}{\mathrm s^2}\right)t[/tex]

and its position [tex]x[/tex] at time [tex]t[/tex] (again, [tex]t=0[/tex] corresponds to the 105.0 second mark) by

[tex]x(t)=\left(62.5\,\dfrac{\mathrm m}{\mathrm s}\right)t+\dfrac12\left(-5\,\dfrac{\mathrm m}{\mathrm s^2}\right)t^2[/tex]

The time it takes for the train to stop is such that [tex]v(t)=0[/tex], for which we have

[tex]0=62.5\,\dfrac{\mathrm m}{\mathrm s}+\left(-5\,\dfrac{\mathrm m}{\mathrm s^2}\right)t\implies t=12.5\,\mathrm s[/tex]

Then the distance covered in the final slow-down phase of the train is

[tex]x(12.5\,\mathrm s)=391\,\mathrm m[/tex]

giving a total distance covered of about 6990 meters.