Respuesta :

The inverse is found by interchanging x and y

f(x) = y

[tex]\text{x = }\frac{2y - 3}{y + 1}[/tex]

Multiply both sides by y + 1

x*(y + 1) = 2y - 3         Remove the brackets on the left

xy + x = 2y - 3           Subtract xy on both sides

x = 2y - xy - 3            Add 3 to both sides

x + 3 = 2y - xy           Factor out y on the right. Use the inverse distributive law

x + 3 = y*(2 - x)          Divide both sides by 2 - x

[tex]\dfrac{x + 3}{2 - x}\text{=y=f(x)}[/tex]