Respuesta :

Calculation of x:

we can see that

angle(DGE)=angle(EGF)

we are given

angle(DGE)=3x-5

angle(EGF)=2x+10

now, we can set them equal

[tex]3x-5=2x+10[/tex]

now, we can solve for x

[tex]3x-5+5=2x+10+5[/tex]

[tex]3x=2x+15[/tex]

subtract both sides 2x

[tex]3x-2x=2x+15-2x[/tex]

[tex]x=15[/tex]

now, we can find angles

Calculation of  angle(CGD):

[tex]angle(CGD)=4x+2[/tex]

we can plug x=15

[tex]angle(CGD)=4*15+2[/tex]

[tex]angle(CGD)=62[/tex]

Calculation of  angle(DGE):

[tex]angle(DGE)=3x-5[/tex]

we can plug x=15

[tex]angle(DGE)=3*15-5[/tex]

[tex]angle(DGE)=40[/tex]

Calculation of  angle(EGF):

[tex]angle(EGF)=2x+10[/tex]

we can plug x=15

[tex]angle(EGF)=2*15+10[/tex]

[tex]angle(EGF)=40[/tex]


Answer:

m∠ CGD = 22°

Step-by-step explanation:

In the figure attached, m∠CGD = 4x + 2, m∠DGE = 3x - 5 and ,m∠ EGF = 2x + 10

Now it is given in figure, m∠DGE ≅ m∠EGF

Now we equate the values of angles

3x - 5 = 2x + 10

3x - 2x = 10 - 5

x = 5

∠CGD = 4x + 2

for x = 15

∠CGD = 4×15 + 2

           = 60 + 2

           = 62°

Therefore, m∠CGD = 62° is the answer.