In the diagram, `bar(AC)` is a diameter of the circle with center O. If m`/_ACB` = 50°, what is m`/_BAC`?

Answers are 
1.50
2.40
3.80
4.100

In the diagram barAC is a diameter of the circle with center O If mACB 50 what is mBACAnswers are 1502403804100 class=

Respuesta :

Answer

2. 40


Explanation

The angle subtended by the diameter to the circumference is equal to 90°.

∴ angle ABC = 90°

  Angles in a triangle = 180°

  50 + 90 + x = 180

90 + x = 180

x = 180 - 90

 = 90°


Answer: 2.  [tex]40^{\circ}[/tex]

Step-by-step explanation:

Given : In the diagram, [tex]\overline{AC}[/tex] is a diameter of the circle with center O.

[tex]m\angle{ACB}=50^{\circ}[/tex]

We know that the angle subtended by the diameter to the circumference is equal to [tex]90^{\circ}[/tex]

Using angle sum property of triangles in  [tex]\triangle{AOB}[/tex], we get

[tex]\angle{BAC}+\angle{ABC}+\angle{ACB}=180^{\circ}\\\\\Rightarrow\angle{BOC}+50^{\circ}+90^{\circ}=180^{\circ}\\\\\Rightarrow\angle{BOC}+140^{\circ}=180^{\circ}\\\\\Rightarrow\angle{BOC}=180^{\circ}-140^{\circ}=40^{\circ}[/tex]

Hence, [tex]m\angle{BAC}=40^{\circ}[/tex]