Answer: 2. [tex]40^{\circ}[/tex]
Step-by-step explanation:
Given : In the diagram, [tex]\overline{AC}[/tex] is a diameter of the circle with center O.
[tex]m\angle{ACB}=50^{\circ}[/tex]
We know that the angle subtended by the diameter to the circumference is equal to [tex]90^{\circ}[/tex]
Using angle sum property of triangles in [tex]\triangle{AOB}[/tex], we get
[tex]\angle{BAC}+\angle{ABC}+\angle{ACB}=180^{\circ}\\\\\Rightarrow\angle{BOC}+50^{\circ}+90^{\circ}=180^{\circ}\\\\\Rightarrow\angle{BOC}+140^{\circ}=180^{\circ}\\\\\Rightarrow\angle{BOC}=180^{\circ}-140^{\circ}=40^{\circ}[/tex]
Hence, [tex]m\angle{BAC}=40^{\circ}[/tex]